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Abstract. This paper is concerned with approximations for expensive function evaluation – the
expensive functions arising in an engineering design context. The problem of reducing the com-
putational cost of generating sufficient learning samples is addressed. Several approaches of using
a priori knowledge to achieve computational economy are presented. In all these, the results of a
cheap model are treated as knowledge to be incorporated in the training process. Several approaches
are described here: in particular, we focus on neural based systems. This approach is then developed
as a new knowledge-based kriging model which is shown to be as accurate as neural based alternat-
ives while being much easier to train. Examples from the domain of structural optimization are given
to demonstrate the approach.
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1. Introduction

The problem of optimization using high cost models is common to many engineer-
ing design problems. The design optimization of an engineering system typically
requires many analyses of that system. Due to this high computational cost, ap-
proximate models for the system are sought. The approximations may be global or
local. Global approximations try to capture the behaviour of the objective function
and/or constraints over the entire domain of interest. Local models are defined in
a specific region of the design space. The work described here focuses on global
approximations; nevertheless the methods used could be implemented locally.

Perhaps the most common way of tackling the problem of expensive function
optimization is through the use of approximations to the expensive model. Re-
sponse surface methods (see for example Myers and Montgomery, 1995) seek poly-
nomial approximations to the function. These models, once constructed, provide a
cheap means of approximating the original expensive function/model. An approach
based on kriging is described in Jones et al. (1998). Their algorithm builds a global
approximation using a kriging model and then performs optimization using this
model. Other approximation strategies include the use of neural networks. All these
methods are, in effect, forms of curve fitting. They are built using data points from
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the high cost model and do not attempt to incorporate any further information on
the problem in hand.

One concern with these approaches is the level of accuracy of the resulting ap-
proximation arising from the inevitably limited quantities of training data used. As
a result, there has been a growing interest in the use of simple lower fidelity models
to overcome this problem by sampling the parameter space at points that are not
sampled for expensive function evaluation. These low fidelity models, while being
less accurate than the original model, are generally much cheaper to compute. As
an example, in a finite element analysis the cheap model may use a coarser mesh
than the original expensive model, while during a CFD analysis a panel code may
replace an expensive Euler analysis. Combining the low fidelity models with the
more accurate but expensive high fidelity models can provide a good combination
of high accuracy and low cost.

The low fidelity model may be included in the approximation in many ways, we
present several of these approaches and make comparison.

Perhaps the simplest way of utilizing low fidelity information is to consider
the differences between the two models. Watson and Gupta (1996) implement this
idea using a neural network to model differences between the two models and
apply the approach to microwave circuit design. The technique uses a design of
experiments (DOE) methodology to identify configurations of the input variables
for which to run the high fidelity model. The low fidelity model is then run at these
design points providing information on the differences between the two models.
An approximation to the high fidelity model can then be constructed using the low
fidelity model and an approximation to the difference.

An alternative to this approach is to model the ratio of the high and low fidelity
models. For example, Haftka (1991) and Chang et al. (1993) calculate the ratio and
derivatives at one point in order to provide a linear approximation to the ratio at
other points in the design space. The approach is applied to a wing-box model of
a high speed civil transport aircraft. More recently the approach has been applied
using polynomial models to approximate the ratio. The approach, termed a “correc-
tion response surface” model, has been applied to aerodynamic drag approximation
by Hutchinson et al. (1994) as well as structural problems (for example, see Vitali
et al., 1999).

A third approach termed “space-mapping” aims to establish a relationship or
mapping between the input space of the low fidelity model and that of the high
fidelity model such that the low fidelity model with the mapped parameter accur-
ately reflects the behaviour of the high fidelity model. Both linear and non-linear
mappings have been considered in the literature (see, e.g., Bandler et al., 1999;
Bakr et al., 2000a, 2000b; Bandler et al., 2001) for details. This technique has been
used extensively in microwave circuit design.

Recently Wang and Zhang (1997) developed a knowledge-based neural network
model for microwave design. This approach includes problem specific knowledge
in the form of generic empirical functions inside the neural network. We extend this
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approach here by incorporating low fidelity information inside the network. This
has particularly important implications when an empirical function representing
knowledge (as in Wang and Zhang) is unavailable.

In this paper, a knowledge-based kriging model is developed. This approach
enjoys similar levels of performance to the knowledge-based neural network ap-
proach, but is much simpler to train. This is an extension of the classical kriging
approach; here the approximation includes information from a weighted low fi-
delity model. The weights in this model are determined along with the kriging
hyperparameters by maximizing the likelihood.

The rest of the paper is set out as follows. Section 2 briefly reviews the use
of multifidelity correction models using neural networks, Section 3 considers a
new application of knowledge-based neural networks in the context of multifidelity
modelling. A knowledge-based kriging model is developed in Section 4. Structural
examples are given in Section 5 that demonstrate some of the capabilities of the
various approaches. Finally, conclusions are drawn in Section 6.

2. Multifidelity Modelling Using Artificial Neural Networks

An artificial neural network, (see, for example, White et al., 1992), consists of a
set of simple processing units which communicate by sending signals to each other
over a large number of weighted connections. The network is trained using training
data obtained from selective calls to the high fidelity model. The trained model can
then be used as a surrogate to the original expensive code. However, when training
data is limited due to the prohibitive cost of generating sufficient learning samples,
then such approximations can be inadequate. The use of multifidelity models is
becoming increasingly popular in overcoming such problems.

We briefly discuss one such approach and then consider a new application
of knowledge-based neural networks, the empirical functions used in Wang and
Zhang (1997) being replaced by a low fidelity model.

Although most applications of neural networks are in function approximation,
they have also been successfully applied to multifidelity modelling, (Watson and
Gupta, 1996). Here the idea is to approximate a function fe which is expensive to
compute. As a result, very few training data are available. The idea is to improve
the approximation given by a cheap function fa which approximates fe and is
less costly to compute but lacks accuracy. This cheaper function contains useful
information about the behaviour of fe in regions where fe is not sampled.

The difference between the two models

d = fe − fa (1)

is considered. This is sampled at various locations xi , i = 1, 2, ..., N and provides
training data (xi , di), i = 1, 2, ..., N which are used to train the neural network.
After training, the network provides a cheaper approximation d̂ to d throughout the
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Figure 1. Schematic diagram of the KBNN approach of Towell and Shavlik (Towell and
Shavlik, 1994).

whole domain. As a result,

fa + d̂ ≈ fe (2)

can be used as a surrogate repetitively at little cost. This is obviously useful when
we wish to optimize the expensive model: we can optimize fa + d̂ instead of fe.

Another approach, as highlighted earlier, is to model the ratio r = fe/fa and
then consider r̂fa as a surrogate for fe.

We now turn our attention to another neural network approach which, we ob-
serve, has applications to multifidelity modelling, the knowledge-based neural net-
work (KBNN).

3. Multifidelity Modelling using Neural Networks by Incorporating Low
Fidelity Data as Knowledge

Typically, neural networks, including the multilayer perceptron (MLP), learn by
example. In function approximation, the network learns by training the outputs of
the network to agree with a set of training data outputs. Another approach is to
train the network using prior knowledge of the function we wish to approximate,
provided this information is available.

The motivation behind knowledge-based neural networks (KBNN) is that people
never really learn by example or theory alone. Our knowledge comes from both
teaching and learning by example. So some hybrid approach seems sensible.

This is the idea in a knowledge-based neural network: prior knowledge is some-
how built into the model. There are at least two possible approaches:

(1) As described in Towell and Shavlik (1994), the prior knowledge is used to
define a network topology and the initial weights within this network. This is
shown in Figure 1. The network is trained using the training examples.

(2) The alternative, Wang and Zhang (1997), is to incorporate this knowledge
inside the network in the form of empirical functions (see Figure 2).
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Figure 2. Schematic of the KBNN approach of Wang and Zhang (Wang and Zhang, 1997).

It is argued in Wang and Zhang that for functional problems, the latter approach
is more suitable. The former, which typically uses symbolic information, is more
suited to the problem of classification. As a result we will only be interested in the
approach of Wang and Zhang here.

As an example, consider data coming from an exponentially decaying sinusoid
with small random pertubation (Figure 3). Suppose that this is expensive to produce
so we only sample at a few locations (six here, Figure 4) and use this to train the
network.

A multilayer perceptron approximation is first calculated, this passes through
the training data, but lacks accuracy away from it. Suppose we now introduce some
empirical function knowledge, namely that the function behaves similarly to an
exponentially decaying sinusoid. This knowledge need not be precise. For instance,
here we assume nothing about the frequency or amplitude of the empirical function.
These parameters are determined by the network during training. This empirical
knowledge can be included in the network.

To compare the results, the test data are shown along with the multilayer per-
ceptron approximation and the knowledge-based neural network approximation in
Figure 5. As can be seen, incorporating knowledge in this way has considerably
increased the accuracy of the approximation in the regions away from the points
where the expensive function has been sampled.

The knowledge-based approach is particularly appealing here since it is readily
applicable to multifidelity modelling. In this paper, we propose to use the informa-
tion generated by the low fidelity model in place of the empirical knowledge: thus
adapting the framework of Wang and Zhang (1997) in the context of multifidel-
ity modelling (compare Figures 2 and 6). This low fidelity model shares physics
with the high fidelity expensive model, but differs in details. Here the ‘empirical
function’ which defines our prior knowledge comes from the cheap model fa: this
gives us some information as to the behaviour of the expensive model fe away from
expensive sampled points. If there is reasonable correlation between the models



302 LEARY, BHASKAR, KEANE

Figure 3. Test data. Noise is added symmetrically to a decaying sinusoid sampled at 57 points.

then this approach is likely to increase the accuracy of the prediction, particularly
at extrapolated points.

3.1. MODEL STRUCTURE

With the modification to the approach of Wang and Zhang (1997) as suggested
earlier in this paper, we consider a network with input layer X, knowledge layer
Z, boundary layer B, region layer R, normalized region layer R′ and output layer
Y (see Figure 7). The low fidelity model now appears in the knowledge layer. The
outputs of the knowledge layer Z and neural layers R′ are weighted and merged by
multiplication. In our experience this approach is seen to perform better than using
a multilayer perceptron with a single hidden layer in a KBNN approach.

The input layer accepts inputs x from outside the model, details of the know-
ledge layer, boundary layer, region layer, normalized region layer and output layer
follow in Equations (3)–(8).

In the following we consider the problem with input vector x (Nx ×1), output y
(approximating the high fidelity model fe(x)) and knowledge z (see Equation (3)).
Both y and z could be vectors, but we will consider the case of a single output only.

As stated earlier, the ‘empirical knowledge’ is given by the cheap model. The
input x is weighted so that the knowledge vector is calculated from the low fidelity
model evaluation as

z = fa(W1x + w2), (3)

where here W1 = diag{w1
1, w

2
1, ..., w

Nx

1 } is a diagonal matrix of weights for scaling
and w2 is a vector of weights for a shift of the input arguments. This procedure can
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Figure 4. Training data. Six data points out of the data in Figure 3 are used for training the
network.

Figure 5. Comparison of approaches.

easily cope with situations where the cheap and expensive models differ only by a
scaling or a shift in the inputs. The weights in (3) are parameters to be determined
when training the network. Since the low fidelity model should be a reasonable
approximation to the high fidelity model the matrix W1 should be close to the
identity matrix and w2 should be close to the zero vector.

We note here that weighting the low fidelity models in this way has parallels
with the space-mapping technique: we are essentially trying to find weights on the
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Figure 6. Multifidelity modelling using the KBNN framework. Note that the low fidelity
model is treated as prior knowledge in a neural network setting.

Figure 7. Application of Wang and Zhang’s approach to multifidelity modelling.

inputs such that the low fidelity model is better correlated with the high fidelity
model.

In the boundary layer, the neuron i is calculated as

bi = B(x, vi ), i = 1, ..., Nb. (4)

This layer could also incorporate function knowledge as in Wang and Zhang (1997).
However, we take it simply as the inner product of x and vi

bi = xT vi , i = 1, ..., Nb, (5)

where vi are a set of free parameters that will be determined during the training
process.



RESPONSE SURFACE MODELLING IN MULTIFIDELITY OPTIMIZATION 305

Using a sigmoid function F , the region layer neurons are constructed from
boundary neurons as

ri =
Nb∏
j=1

F (αij bj + θij ), i = 1, 2, ..., Nr . (6)

Here αij and θij are scaling and bias parameters respectively.
The normalizing layer normalizes the outputs of the region layer, that is,

r ′
i = ri∑Nr

j=1 rj
i = 1, ..., Nr ′ = Nr. (7)

Finally, the output is given by

y = β1z


 Nr′∑

k=1

ρkr
′
k


 + β0, (8)

where ρk are further parameters satisfying

Nr′∑
k=1

ρ2
k = 1. (9)

Note that the merging of the knowledge layer and the neural layer has been
performed using multiplication. This is consistent with the approach of Wang and
Zhang (1997). Clearly other choices of combining this information (e.g., addition)
exist and could be considered. In this way simple relationships between the high
and low fidelity models can be exploited. Extension to problems with multiple out-
puts on the lines of Wang and Zhang (1997) is possible but will not be considered
here.

3.2. TRAINING THE NEURAL NETWORK THAT INCORPORATES LOW FIDELITY

KNOWLEDGE

Let y represent the neural model output and fe represent the expensive model out-
put. The neural network learns from the training data (xi , fe(xi )), i = 1, 2, ..., Ndata.
The trainable parameters are the knowledge weights W1 and w2 , the bound-
ary layer weights vi , i = 1, 2, ..., Nb , the scaling parameters αij and θij , i =
1, 2, ..., Nr , j = 1, 2, ..., Nb , β1, β0 and ρk, k = 1, 2, ..., Nr ′ . For the 2D example
described in Section 5, this requires a total of 33 parameters to be determined
during training, the majority of these being due to the neural network structure.

The undetermined parameters are chosen to minimize the difference between
neural network outputs y and the actual training outputs fe in the least square
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sense. Thus we minimize

E = 1

2

Ndata∑
i=1

(yi − (fe)i)
2 (10)

with respect to these parameters.
The derivatives of E with respect to the unknown parameters are given in

Wang and Zhang (1997) and can be used in gradient descent minimization. Up-
dating the weights in this case requires modifying the traditional backpropagation
algorithm, Rumelhart et al. (1996), slightly to cope with the different network topo-
logy. (Backpropagation was proposed for the MLP which has a rigorously ordered
structure). Of course, other optimization strategies such as conjugate gradient min-
imization (Press et al., 1992) could be used to determine the weights.

4. Inclusion of Low Fidelity Knowledge in Kriging Models

Having presented a method to include cheap but low fidelity information along
with expensive but high quality information in a neural network framework, we
now turn to the problem of achieving the same in the context of kriging.

In a typical approximation method, the non-linear relationship between obser-
vations (responses) and independent variables is expressed as

y = f (x) (11)

where y is the observed response, x is a vector of k independent variables

x = [x1, x2, ..., xk] (12)

and f (x) is some unknown function. We define

ŷ = f̂ (x), (13)

an approximation for y based on kriging. A brief description of its implementation
now follows. We then modify this classical approach to incorporate knowledge that
comes from a weighted low fidelity model.

Given a set of N training data [x(1), x(2), ..., x(N)] the kriging model can be used
to make a prediction ŷ = f̂ (x) at untested points x in the design space.

A correlation matrix of the training data

R(x(i), x(j)) = exp[−d(x(i), x(j))] (14)

is first sought where d is some distance measure. For example

d(x(i), x(j)) =
k∑

h=1

θh|x(i)h − x
(j)

h |ph (θh � 0, 1 � ph � 2) (15)
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where θh and ph are some as yet undetermined parameters.
When we wish to sample at a new point x, we form a vector of correlations

between the new points and the training data

r(x) = R(x, x(i)) = [R(x, x(1)), ...,R(x, x(N))]. (16)

The prediction is then given by

ŷ(x) = µ + rT R−1(y − 1µ). (17)

The parameters θh and ph are determined by maximizing the likelihood of the
sample

1

(2π)
N
2 (σ 2)

N
2 |R| 1

2

exp

[−(y − 1µ)T R−1(y − 1µ)
2σ 2

]
(18)

where the parameters µ and σ 2 are given by

µ = 1T R−1y
1T R−11

(19)

and

σ 2 = (y − 1µ)T R−1(y − 1µ)
N

(20)

respectively. Note that this model strictly interpolates the training data.

4.1. TWO METHODS OF INCORPORATING MULTIFIDELITY DATA IN KRIGING

The simplest multifidelity modelling strategies using kriging would again model
the difference or the ratio of two models at a given set of sampled points. That is,
we may approximate

d = fe − fa (21)

and add it to fa to approximate fe. Alternatively we may model

r = fe/fa, (22)

and then take r̂fa as a surrogate for fe.
As a second approach, we propose to use low fidelity cheap information along

with the high quality expensive information within the approximating model itself.
This is in contrast with the first approach where some relationship between the
data of two different fidelities is modelled explicitly. The cheap model, now taken
as prior knowledge, can be suitably weighted to ensure best agreement between the
two models of differing fidelity. The general structure of information flow is shown
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Figure 8. Schematic of the knowledge-based kriging approach with the low fidelity model
treated as prior knowledge.

in Figure 8. Note the similarity in the approach of the strategy of Figure 6 and that
of Figure 8. The only departure is in the way parameters are extracted in the two
cases – while the algorithm underlying the diagram in Figure 6 uses an artificial
neural network technique, that of Figure 8 uses kriging. In this way, in both cases,
the low fidelity model is kept as an integral part of the approximation throughout.
This is opposed to standard correction techniques where the low fidelity data do not
inherently control the model training process. In mathematical terms, it amounts to
a lack of implicit influence on the likelihood function that needs to be maximized
(a discussion on this will follow shortly).

In this paper, we consider modelling a response with a single output. The inputs
x are fed into the knowledge layer (the weighted low fidelity method) and into
the kriging model. As shown in Figure 8, the knowledge layer outputs the value
z, using the weighted low fidelity method according to Equation (3). The kriging
model inputs x and outputs some prediction κ say. The output of the model can
be defined, as before, in several ways, e.g., based on either addition z + κ or
multiplication z × κ . These could also be weighted as in Equation (8). It may
also be possible to let the model itself decide on the best functional form between
the outputs of the knowledge layer z and the kriging prediction κ by using further
parameters.

While considering the strategy of Figure 6 using neural networks, the undeter-
mined weights are extracted by minimizing the sum of squares of differences (see
Equation (10)). It is not any more possible to train the model in this way. This is
because kriging models interpolate the data exactly, thus the difference between
the data and the model is zero for all the sampled points, whatever our choice of
weights. Therefore, the free parameters of the model (including the weights in the
low fidelity model) need to be determined by maximizing the likelihood function
of the sample as given by Equation (18). This ensures that the best model out of
all possible interpolating models is chosen. We have set ph = 2 and optimized
with respect to θh, h = 1, ..., k and the weights in the knowledge layer. This typ-
ically results in a smaller optimization problem than in training the neural network
that uses weighted low fidelity data as prior knowledge (as in the developments
of Section 3). For the 2D example given in Section 5, this requires just a six-
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dimensional optimization problem (c.f., 33 for the approach of Section 3) Once
again, this optimization problem can be tackled using standard techniques, for
example, conjugate gradients.

Our kriging approach has some parallels with existing methodology in the lit-
erature (Sacks et al., 1989). The kriging prediction (17) uses a constant term µ

added to some stochastic process term Z(x) = r(x)R−1(y − 1µ). In the literature
polynomial terms

l∑
j=0

βlfl(x) (23)

have also been added to the stochastic process term. The βl are regression paramet-
ers and the fl(x) are regression functions, the prediction is given by

l∑
j=0

βlfl(x) + Z(x). (24)

All unknown parameters are typically chosen by maximizing the likelihood.
We consider a model of the form fa(x) + Z(x) in our difference approach or

with the inputs to the low fidelity model weighted in our KBK approach, where the
weightings again come from maximizing the likelihood. Clearly there are parallels
with these approaches. Further, using

l∑
j=0

βlfl(x) × Z(x) (25)

would have parallels with our ratio model.
Past experience suggests that using polynomial terms for the fl(x) rarely adds

much accuracy to the kriging approximation. Whereas with our knowledge-based
approach, using problem specific knowledge in the form of low fidelity models we
are able to substantially increase the accuracy of the approximation.

As with the possible extension of the method presented in Section 3, we could
consider multiple outputs: This can be achieved here using a cokriging approach
((see Cressie, 1993), for a description of cokriging). In this paper, however, we
confine ourselves to problems with a single output.

We now turn our attention to demonstrating standard surrogate modelling ap-
proaches, correction approaches and the methods developed in this paper on two
structural examples. In what follows, the methods that incorporate low fidelity
models as knowledge inside the approximation are referred to as a knowledge-
based neural network (KBNN) and a knowledge-based kriging model (KBK) re-
spectively.
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5. Examples

5.1. EXAMPLE 1

An example from the domain of structural design is presented now. Consider an
elastic structure as shown in Figure 9. In this example we consider the length L
to be 1 m. The horizontal beam is subjected to a uniformly distributed load p0 =
50 N/m. We wish to minimize the weight of the structure by varying the cross
section in various ways. We consider two two-dimensional problems as in Figure
10 and one four-dimensional problem as in Figure 11. In all cases the minimization
is carried out subject to the constraints

σmax < 100 000 N/m2, (26)

where σmax is the maximum stress in the structure and

0.05 m � ti � 0.1 m (27)

where i varies from 1 to 2 or from 1 to 4 for the two- and four-dimensional
problems, respectively.

The problem was analysed using a simple finite element beam model. Two
levels of complexity were considered: a coarse model consisting of just four ele-
ments and a fine model consisting of 100 elements. In these two models the ob-
jective V (volume is proportional to weight) remains the same, whereas the stress,
which forms the constraint, varies. It is this variation in stress between fe and fa
that we attempt to model.

5.1.1. 2D beam problem

For the purposes of approximation, the nine expensive data points ((0.05, 0.05),
(0.075, 0.05), (0.1, 0.05), (0.05, 0.075), (0.075, 0.075), (0.1, 0.075), (0.05, 0.1),
(0.075, 0.1), (0.1, 0.1)) are considered.

Results are presented for the following eight approaches:

– Low fidelity model optimization (Cheap)
– Kriging the expensive data at the sampled points and optimizing (Kriging)
– Kriging the difference fe − fa at the sampled points adding this to fa and

optimizing (Addition).
– Kriging the ratio fe/fa at the sampled points multiplying this by fa and

optimizing (Ratio).
– The knowledge-based neural network approach (KBNN) presented in Sec-

tion 3.
– The knowledge-based kriging approach presented in Section 4 using addition

(KBK1).
– The knowledge-based kriging approach presented in Section 4 using multi-

plication (KBK2).
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Figure 9. The problem.

Figure 10. The two dimensional optimization problems - A) independent square sections, B)
similar rectangular sections.

– Direct optimization of the high fidelity model (Expensive).

In both the KBNN and the KBK models we consider the elements of W1 in the
range [0.75, 1.10] and those of w2 in the range [−0.025, 0.025]. In the knowledge-
based neural network we take Nb = Nr = Nr ′ = 3. The results for problem A are
shown in Table 1. The expensive model result is shown for comparison purposes
only: in general this much information about the high fidelity model is unavailable.



312 LEARY, BHASKAR, KEANE

Figure 11. The four dimensional optimization problem.

Table 1 also lists the relative error (stress) in each model. This is an average error
taken over 441 new test points spread throughout the design space. The error has
been computed by taking the high fidelity model as exact. Table 2 lists the same
results as Table 1, but for problem B.

It is clear from these tables that modelling using the nine high fidelity model
response points alone leads to relatively large errors. Introducing knowledge in the
form of a cheap approximation is beneficial as there is some degree of correlation
between the models. We should expect this since the two models represent the
same physical system. In the example, of the techniques discussed, the addition
model performs worst. The ratio model performs better in this case but how these
models perform relative to each other is problem dependent. The knowledge-based
approaches perform better: the methods being more flexible than modelling the
difference and ratio alone they are expected to outperform the addition and ratio
models. It is not clear as to which of the knowledge-based approaches is likely to
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Table 1. Results for 2D beam problem A

Model t1 t2 V Relative error

Cheap 5 × 10−2 6.7846 × 10−2 8.139 × 10−3 1.837 × 10−1

Kriging 5 × 10−2 7.3944 × 10−2 9.003 × 10−3 9.267 × 10−2

Addition 5 × 10−2 7.2780 × 10−2 8.832 × 10−3 2.418 × 10−2

Ratio 5 × 10−2 7.2645 × 10−2 8.813 × 10−3 2.262 × 10−3

KBNN 5 × 10−2 7.2576 × 10−2 8.803 × 10−3 2.8160 × 10−4

KBK1 5 × 10−2 7.2693 × 10−2 8.820 × 10−3 1.272 × 10−2

KBK2 5 × 10−2 7.2576 × 10−2 8.803 × 10−3 1.723 × 10−3

Expensive 5 × 10−2 7.2571 × 10−2 8.802 × 10−3 N/A

Table 2. Results for 2D beam problem B

Model t1 t2 V Relative error

Cheap 5 × 10−2 7.5101 × 10−2 9.066 × 10−3 1.811 × 10−1

Kriging 5 × 10−2 8.4340 × 10−2 1.0181 × 10−2 6.736 × 10−2

Addition 5 × 10−2 8.3597 × 10−2 1.0091 × 10−2 1.281 × 10−2

Ratio 5 × 10−2 8.3376 × 10−2 1.0064 × 10−2 6.663 × 10−5

KBNN 5 × 10−2 8.3380 × 10−2 1.0065 × 10−2 8.7170 × 10−6

KBK1 5 × 10−2 8.3379 × 10−2 1.0065 × 10−2 1.5870 × 10−4

KBK2 5 × 10−2 8.3379 × 10−2 1.0065 × 10−2 1.5740 × 10−5

Expensive 5 × 10−2 8.3379 × 10−2 1.0065 × 10−2 N/A

perform best in general, although the kriging based approach is much quicker to
set up.

Figure 12 shows the objectives and constraint boundaries for the cheap, expens-
ive and best approximation models for problem A. Similarly, Figure 13 shows the
objectives and constraint boundaries for the cheap, expensive and best approxima-
tion models for problem B.

5.1.2. 4D beam problem

We further consider the knowledge-based models on the 4D problem. The four
parameters of the design space are the cross sectional properties of each beam.
In this problem we use 21 space filling points to train the model. The high fi-
delity model is evaluated at these points only. The results for the low fidelity,
KBNN, KBK1, KBK2 and expensive model are shown in Table 3. Once again, the
expensive model optimization has been carried for comparison purposes only (it
requires 185 expensive function evaluations using the L-BFGS-B optimizer [Zhu
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Table 3. Results for 4D beam problem

Model t1 t2 t3 t4 V

Cheap 5 × 10−2 5 × 10−2 5 × 10−2 7.9943 × 10−2 7.5327 × 10−3

KBNN 5 × 10−2 5 × 10−2 5 × 10−2 8.8470 × 10−2 7.9590 × 10−3

KBK1 5 × 10−2 5 × 10−2 5 × 10−2 8.8562 × 10−2 7.9637 × 10−3

KBK2 5 × 10−2 5 × 10−2 5 × 10−2 8.8576 × 10−2 7.9643 × 10−3

Expensive 5 × 10−2 5 × 10−2 5 × 10−2 8.8427 × 10−2 7.9569 × 10−3

Figure 12. Objective and constraints for 2D beam problem A

et al., 1994] to optimize the problem in this way compared to just 21 using the
knowledge-based approaches).

The knowledge-based approaches are again seen to perform well: including
information from the low fidelity model leads to a prediction of the optimum which
is very close to the true optimum in all cases.
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Figure 13. Objective and constraints for 2D beam problem B

Figure 14. Example 2 - Low fidelity model (left) and high fidelity model (right).

5.2. EXAMPLE 2

As a final example we consider the design of an aero-engine component. Again the
objective is to minimize the weight of the structure whilst keeping the stress at a
key point below a prescribed value. The low fidelity model is shown in Figure 14
(left). This model consists of 246 finite elements and requires solution of a system
of 1470 equations. A much more sophisticated high fidelity model is shown in
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Figure 14 (right). This model consists of 11640 elements and requires solution of
a system of 71064 equations. Clearly the former should be much quicker to solve
than the latter and can be used as a guide to the behaviour of the high fidelity model.
One might expect a well tuned solver dealing with banded matrices to scale with
perhaps O(N2) – here this would give a ratio of run times of over 2000. In fact,
because these models are, in absolute terms, both quite small, the savings are less
because of the overheads associated with commercial finite element codes – here
we saw a ratio closer to 20. In the following work an extremely accurate surrogate
of the low fidelity model (built using 500 calls to fa) is used in the knowledge
layer. Such accuracy can be achieved, as the model is relatively simple to compute.

Here four design variables define the structural geometry, these are constrained
within the following realistic bounds:

1 mm � x1 � 4 mm (28)

2 mm � x2 � 5 mm

2 mm � x3 � 5 mm

2 mm � x4 � 5 mm.

These variables relate to the thickness of the inner ring faces, inner ring thickness,
outer ring thickness and spoke thickness, respectively. The loading on the structure
is also given a realistic value as suggested by colleagues in industry.

Initially 16 runs of the high fidelity model are made at a space filling set of
the input parameters and following this various approximations are sought. For the
purposes of assessing our model’s accuracy 484 further high fidelity model eval-
uations at alternative combinations of the inputs are made (but not used in model
training). Our approximations are then compared with these results. There is reas-
onably good correlation between the resulting stresses in the high and low fidelity
models. However, the error in the low fidelity model is large. The kriging model
applied to the high fidelity model alone leads to a much reduced average error. Here
we only report results from the most accurate multifidelity modelling strategy, the
ratio model. This reduced the average error still further whilst the knowledge-based
kriging model (using the ratio) led to the lowest error of all. Training the KBNN
proved to be difficult in this example: we tried training a KBNN with three neurons
per layer (43 optimization variables) as well as a KBNN with five neurons per
layer (85 optimization variables). In both cases we were unable to fully train the
model hence the results are poor. This highlights the potential difficulties with the
KBNN approach. It might be that more neurons are required before we can obtain
an acceptable approximation, this however would involve solving an even larger
optimization problem during training. Full details of these results can be found
in Table 4. In this case we chose the elements of W1 in the range [0.75, 1.10] and
those of w2 in the range [−0.25, 0.25]. Finally the optimum design produced by the
most accurate model (KBK) weighed 73.31 kg. The optimum design variables were
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Table 4. Average errors in example 2

Model Average % error

Low fid. 46.4919

Kriging 2.4074

Ratio 1.7040

KBNN(3) 3.2215

KBNN(5) 3.8932

KBK 1.4251

(2.0233, 2.0, 2.0, 2.0 mm), here the stress takes the value 2.013 N/mm2, which is
very close to our predefined maximum value of 2.0 N/mm2.

In this case a direct optimization was performed and the resulting optimum
design had a weight of 73.58 kg. The optimum design variables were (2.0547,2.0,
2.0,2.0 mm) and the stress value here was 1.972 N/mm2. This required a total of
158 calls to the high fidelity model. Again we see the knowledge-based approach
leads to a significant reduction in computational cost.

6. Conclusions

The idea of multifidelity modelling applied to expensive function optimization has
been explored. Approaches that take account of lower fidelity models are more ef-
fective than standard response surface approaches built on expensive models alone
because:

– they allow comparable approximations with fewer training data,
– they are more accurate at extrapolation.

In particular, the application of knowledge-based artificial neural networks
(KBNN) to the problem of multifidelity modelling has been described. The prior
knowledge used need not be very accurate or complete: one source of this know-
ledge is a low fidelity model. This leads us to a simple strategy. A new knowledge-
based kriging (KBK) model that draws on these ideas is developed.

There is little to choose between the KBNN and KBK approaches based on
results alone when they work: both are very accurate for Example 1. The advant-
age of the kriging model lies in the training. Gibbs and Mackay (1997) note that
determining the most probable values of the hyperparameters in a Gaussian pro-
cess framework is a straightforward process. Kriging falls within this framework.
Optimizing hyperparameters for neural networks is usually a more complicated
problem and is sometimes very difficult to achieve. In the first two-dimensional
example given, training the KBNN required solving a 33-variable optimization
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problem, whereas training the KBK required solving only a six variable optim-
ization problem which is, of course, considerably easier. In the second example
an adequate neural network was not achieved at all. See Rasmussen (1996) for an
extensive comparison of Gaussian process models and neural networks.

The knowledge-based approaches provide improved accuracy on a global scale
compared to the other methods described. Clearly the first example given is some-
what simple, however it does provide a benchmark result so we can compare the
approaches easily. It also allows for visualization of the principles involved. The
second example demonstrates the approach on a more realistic problem. Further
work will consider the application of these methods on even more challenging
problems in structural optimization.
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